Abstract

In this work, a method concerning thermal consolidation is proposed to simulate the traditional powder metallurgy process and accomplish the composition screening of powder metallurgy Ni-based superalloys U720Li and RR1000 with rare metal scandium, and superalloys with zero scandium addition, medium scandium addition and high scandium addition are selected. Then effects of scandium on the microstructure and mechanical properties of superalloys are further investigated through fast hot pressed sintering. The results indicate that scandium doping can effectively refine the grain through modifying the size and volume fraction of primary γ’ precipitates at the grain boundary. Meanwhile, scandium can promote the growth and precipitation of secondary γ’ precipitates to some extent. Due to the comprehensive effects of γ’ precipitate modification and grain boundary strengthening, as-sintered U720Li with 0.043 wt.% scandium presents an excellent combination of tensile strength and ductility at ambient and elevated temperature while as-sintered RR1000 with 0.064 wt.% scandium has a good performance at elevated temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call