Abstract
Conventional oxidation of 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD) by air would bring various drawbacks for perovskite solar cells (PSCs), such as low power conversion efficiency (PCE) and poor stability. Here, a series of heteroatom-substituted Keggin-type polyoxometalates (POMs), H4PMo11VO40 (PMo11V), H5PMo10V2O40 (PMo10V2), and H6PMo9V3O40 (PMo9V3) are prepared and applied as p-type dopants to realize quantitative and controllable oxidation of Spiro-OMeTAD under an inert condition. The possible mechanism and electron donor regions in the oxidation of Spiro-OMeTAD are investigated using two-dimensional nuclear magnetic resonance (NMR) spectra and the relationship between POM structures and the oxidation degree of Spiro-OMeTAD is proposed. In addition, the synergistic effect of heteroatoms makes V2-substituted PMo10V2 exhibit appropriate oxidation of Spiro-OMeTAD and promoted the highest efficient hole extraction as well as the decreased charge recombination. Therefore, the champion device doped with PMo10V2 shows a PCE of 20.41% and a superior open circuit voltage (Voc) of 1.133 V, surpassing that of the pristine device (18.61%). This work presents a fresh perspective to the controllable oxidation of Spiro-OMeTAD employing economical inorganic POM dopants, which would promote the commercialization of PSCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.