Abstract

The microstructure evolution, mechanical properties and dry sliding behaviour of Ni–30Cu–xSi alloy have been investigated systematically. As the volume fraction of microscale second-phase particles and nanoscale precipitates increases, the hardness, yield strength and ultimate tensile strength of alloy are improved significantly but elongation is reduced. Through confocal laser scanning microscope and atomic force microscope, it is suggested that the wear mode changes from the mixture of abrasive and adhesive wear to single abrasive wear. Owing to the existence of netlike microscale second-phase particles which are more likely to split the matrix, the Ni–30Cu–5.5Si alloy exhibits an abnormal higher wear rate even with the highest hardness. The netlike structure which deteriorates the friction performance should be avoided in wear-resistant materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call