Abstract

Hyperspectral imaging (HSI) is a new emerging modality useful for the noncontact assessment of free flap perfusion. This measurement technique relies on the optical properties within the tissue. Since the optical properties of hemoglobin (Hb) and melanin overlap, the results of the perfusion assessment and other tissue-specific parameters are likely to be distorted by the melanin, especially at higher melanin concentrations. Many spectroscopic devices have been shown to struggle with a melanin related bias, which results in a clinical need to improve non-invasive perfusion assessment, especially for a more pigmented population. This study investigated the influence of skin tones on tissue indices measurements using HSI. In addition, other factors that might affect HSI, such as age, body mass index (BMI), sex or smoking habits, were also considered. Therefore, a prospective feasibility study was conducted, including 101 volunteers from whom tissue indices measurements were performed on 16 different body sites. Skin tone classification was performed using the Fitzpatrick skin type classification questionnaire, and the individual typology angle (ITA) acquired from the RGB images was calculated simultaneously with the measurements. Tissue indices provided by the used HSI-device were correlated to the possible influencing factors. The results show that a dark skin tone and, therefore, higher levels of pigmentation influence the HSI-derived tissue indices. In addition, possible physiological factors influencing the HSI-measurements were found. In conclusion, the HSI-based tissue indices can be used for perfusion assessment for people with lighter skin tone levels but show limitations in people with darker skin tones. Furthermore, it could be used for a more individual perfusion assessment if different physiological influencing factors are respected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.