Abstract

Experimental measurements and numerical analyses were performed to investigate the IC thresholds of two commercialized UCAs, albumin-shelled KangRun® and lipid-shelled SonoVue®. The IC thresholds of these two UCAs were measured at varied acoustic pulse lengths and bubble concentrations, according to the IC dose quantifications based on passive cavitation detection (PCD). Then, the shell properties of UCAs were estimated by fitting the measured acoustic attenuation data. Finally, the influences of acoustic pulse length and UCA shell properties on the microbubble nonlinear behaviors were discussed based on numerical simulations, which would give us better understanding of the dependence of microbubble IC threshold on the sonication condition and physical structure properties of the coating shells. The experimental results show that: (1) the IC threshold of UCAs is dependent on the acoustic driving conditions, the shell properties of UCAs and the bubble concentration; (2) for both the lipid- and albumin-shelled UCAs, the IC threshold generally decreases with the increasing UCA volume concentration; (3) IC threshold is observed higher for short-pulse excitation, then its value decreases as the acoustic pulse length increases from 5 to 20 cycles and finally tends to reach a steady state for even longer pulsed exposures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call