Abstract

High-speed liquid jets have been applied to many fields of engineering, science and medicine. It is therefore of benefit to all these areas to investigate their characteristics by modern and inexpensive methods using a computational fluid dynamics (CFD) technique. Previously, high-speed liquid jets have been studied experimentally using a momentum exchange method, called the “impact driven method (IDM)”, by which the impact of a high-velocity projectile on the liquid package contained in the nozzle cavity produced the jet. The shock pulse reflections in the cavity caused by the impact then drove a multiple pulsed jet from the nozzle exit. In this study, a two-fluid simulation consisting of liquid and air can be successfully calculated by using a two-phase flow mixture model and a moving mesh for the projectile motion. The CFD results show good agreement to the results of previous experimental studies, both quantitatively and qualitatively. For the first time, the wave propagation within the liquid in the nozzle has been captured and analyzed, thereby demonstrating the dynamic characteristics of multiple pulsed high-speed liquid jets initiated by the IDM. This provides a breakthrough in the simulation of the supersonic injection of a liquid into air by using a well-known and user-friendly CFD software. It is useful fundamental knowledge for future studies of high-speed injection with applications in all its related fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call