Abstract

This study clarified the effects of the chosen hardening model, through-thickness normal stress, and non-linear strain path on the precision of forming limit diagram (FLD). The Marciniak-Kuczynski (M-K) instability theory was employed to calculate the FLD of AA5754-O based on the different hardening models. Swift, Voce, modified Voce, Kim-Tuan, and modified Kim-Tuan hardening models were adopted to predict the forming limits, and their constant parameters were presented. Predicted FLDs indicate that modified Kim-Tuan has a better agreement with experimental data than other models. After that the influences of through-thickness normal stress on the forming limit diagram were examined. The three-dimensional stress state was converted to plane-stress condition according to the assumption that hydrostatic stress is ineffective on the plastic deformation. The results show that formability improves when normal stress increases. However, the effect of the normal stress on FLD for various hardening models is different. Due to the complexity of sheet metal forming, the strain path of the material may change during the deformation process. The results indicated that strain path has a significant effect on the FLD, and the path dependence of the forming limit stress diagram (FLSD) will be examined in detail. Finally, the forming limits were computed to analyze the effect of the normal stress on the non-linear loading path deformation. It was observed that by increasing the amount of pre-strain, the effect of the normal stress on the formability will diminish. Moreover, results showed that normal stress will affect the path dependence of the FLSD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call