Abstract

Mechanical faults are the main causes of abnormal opening, refusal operation, or malfunction of high-voltage circuit breakers. Accurately assessing the operational condition of high-voltage circuit breakers and delivering fault evaluations is essential for the power grid's safety and reliability. This article develops a circuit breaker fault monitoring device, which diagnoses the mechanical faults of the circuit breaker by monitoring the vibration information data. At the same time, the article adopts an improved deep learning method to train vibration information of high-voltage circuit breakers, and based on this, a systematic research method is employed to identify circuit breaker faults. Firstly, vibration information data of high-voltage circuit breakers is obtained through monitoring devices, this vibration data is then trained using deep learning methods to extract features corresponding to various fault types. Secondly, using the extracted features, circuit breaker faults are classified and recognized with a systematic analysis of the progression traits across various fault categories. Finally, the circuit breaker's fault type is ascertained by comparing the test set's characteristics with those of the training set, using the vibration data. The experimental results show that for the same type of circuit breaker, the accuracy of this method is over 95%, providing a more efficient, intuitive, and practical method for online diagnosis and fault warning of high-voltage circuit breakers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call