Abstract

As the size of microfluidic channel further shrinks to nanometer, the dimension is approximate to biomolecules as well as Debye length (DL). Great deals of phenomena which do not exist in the usual world will appear. The overlapping of electrical double layers (EDL) in the channel and the increasing of the viscosity are such good examples. All of these phenomena lead to the fundamental research such as colloid science, transport process and micro/nanoscale hydrodynamics. It demands more advanced technique for micro/nanoscale design and fabrication as the channels downing to nanometer scale. In this work, molecular dynamics was adopted to calculate the transport of proteins and water molecules in nanofluidic channels. New methods of nanochannel fabrication were developed based on glass substrate. Glass nanochips were achieved via ultraviolet lithography and wet chemical etching. The channel depth could be adjusted by controlling the etching time. Finally the scanning electron microscope (SEM) and surface profiler were used to characterize the shape and surface morphology of the nanochannel in detail. This study presents the feasibility of such design and fabrication methods, which gives an interesting exploration for the application of nanofluidic technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call