Abstract

The operational characteristics during transients are significantly influenced by magnetic saturation in electrical equipment. For the computation of steady-state rated operation in multiphase induction machines, the assumption of linear magnetic behavior of the iron core in classical machine models may be sufficient. The mathematical models of the considered models differ in terms of the existence or absence of dynamic cross-saturation effects. The approach that is most frequently used to examine the impact of magnetic saturation is based on the state-space variable representation of the mathematical model in dynamic axes (d–q). The purpose of this research is to investigate the effects of magnetic saturation on six-phase induction machines. In this study, a d–q transformation-based model of a six-phase induction machine (SPIM), including the magnetic saturation effect, is developed. The cross-saturation and the common mutual leakage inductance between the two sets of stators’ windings are then developed and analyzed, and the developed models were simulated and results are compared with and without cross-saturation. The main and leakage flux saturation, as well as the mutual coupling between the two windings, are all accounted for in the model, which is based on the vector space decomposition method. A significant increase in currents and voltage results from the highly saturated magnetic paths of the leakage fluxes in six-phase induction machines. In order to investigate the impact of cross-saturation, inductances computed using analytical methods and those without taking cross-saturation into consideration were compared. These outcomes are then transformed into a condensed current depending on parameter functions for transient machine models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call