Abstract

Abstract Fly ash (FA) is a complex and abundant solid waste created by humans, and has caused environmental issues, for which flotation is an effective technique employed before its comprehensive utilization. However, the complex and hydrophilic characteristics of FA particles cannot naturally fulfill the selective separation by common flotation. Therefore, this study aims to provide an insight into fluid intensification effects on flotation to achieve the enhancement of FA surface property and decarburization. The relevant effects and mechanisms are investigated, based on the measurements of zeta potential, infrared spectroscopy, contact/wrap angle, induction time, size distribution and scanning electron microscopy–energy dispersive spectrometry. Experimental results manifested that the maximum unburned carbon recovery (73.25%) and flotation rate (0.2037 s–1) were achieved with preconditioning energy inputs of 14.23 and 6.57 W·kg–1 respectively. With increasing preconditioning energy inputs, fluid intensification effects could promote the inter-particle collision/attrition, detachment of hydrophilic existence and collector adsorption on particles. Correspondingly, absorbance of some hydrophobic and hydrophilic functional groups was strengthened and weakened respectively, which accounted for the improved interfacial properties, reflected as the increased contact and wrap angles, together with declined induction time. Overall, this article revealed the positive influences of fluid intensification based preconditioning process on rendering particle surface hydrophobic and improving separation performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.