Abstract

This paper presents a detailed experimental and numerical investigation for a turbine cascade with different trailing edge ejection. The numerical simulation is based on Three-Dimensional Navier–Stokes equations coupled with an effective ejection model, where a high resolution non-oscillatory scheme, LU-SGS implicit algorithm and Baldwin-Lomax turbulence model are employed. The experiments presented in this paper focused on a transonic turbine cascade performance with different ejection to validate the numerical simulation results. The results show that the blowing ratio has a small effect on the Mach number distribution and exit flow angle with two slot types. However the energy loss coefficient increases initially, and subsequently has a decrease tendency with the increasing of blowing ratio. The ejection from the symmetry slot blows away the vortex at the blade trailing edge and strengthens the mixing between the wake and main flow. The ejection from the pressure side cutback only clears up the vortex near the slot surface, and has small effect on the flow field near the trailing edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.