Abstract

In this paper, the effects of three isoflavones including daidzein, genistein, and puerarin on fibrillation of hen egg-white lysozyme were investigated by various analytical methods. The results demonstrated that all isoflavones could effectively inhibit the fibrillogenesis of hen egg-white lysozyme and destabilized the preformed fibrils of hen egg-white lysozyme in a dose-dependent manner. To further understand the inhibition mechanism, molecular modeling was carried out. The docking results demonstrated that the isoflavones could bind to two key fibrogenic sites in hen egg-white lysozyme through van der Waals force, electrostatic forces, and hydrogen bonding, as well as σ-π stacking. By these means, isoflavones could not only obviously enhance the hydrophobicity of the binding sites, but also greatly stabilize the native state of HEWL, which was able to postpone the fibrosis process of hen egg-white lysozyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call