Abstract

In recent years overspray fogging has become a powerful means for power augmentation of industrial gas turbines. Despite the positive thermodynamic effect on the cycle droplets entering the compressor increase the risk of water droplet erosion. Further deposited water leads to a higher sensitivity toward fouling due to an increased stickiness of the blades. Therefore, erosion resistant hydrophobic coatings are applied to the first stages of compressors. Although some patents claim the use of such coatings the aerodynamic impact of a different wettability is not regarded so far. This issue was addressed in the field of aerodynamic efficiency of wings in heavy rain showing higher penalty for hydrophobic coatings. In this study, the issue of a different blade surface wettability in a linear transonic compressor cascade is addressed. Different coatings are applied resulting in contact angles of 51–95 deg. The inflow Mach number was fixed at design inflow Mach number, and the inflow angle was varied over a broad range. The effect on the water film pattern is analyzed in terms of position of film breakup, rivulet width, and totally wetted surface. The performance of the cascade under two-phase flow was analyzed using laser Doppler anemometry/phase Doppler anemometry measurement technique in terms of loss coefficient based on wake momentum thickness and flow turning. It is shown that the wettability of the surface has significant effects on the film structure leading to a lower fraction of wetted surface with increasing contact angle. The influence on performance is limited to effects in the proximity of the surface and is dependent on operation point. While in design conditions hydrophilic coating show lower losses, the trend is vice-versa for off-design conditions. The data represent first experimental work on the influence of surface wettability in a droplet-laden flow supporting positive features for hydrophobic coatings in gas turbine compressors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.