Abstract
Abstract In this paper, cerium nitrate supported silica was prepared as a new type of catalytic synergist to improve the flame retardancy in polypropylene. When 1% of Ce(NO3)2 supported SiO2 was added, the vertical combustion performance of UL-94 of polypropylene composites was improved to V-0, the limiting oxygen index (LOI) was increased to 33.5. From the thermogravimetric analysis (TGA), the residual carbon of C and D was increased by about 6% at high temperature compared with B. When adding supported catalyst, the heat release rate (HRR) and total heat release (THR) were significantly reduced according to the microscale combustion calorimetry (MCC), the HRR of sample E with 2% synergist was the lowest. The combustion behaviors of intumescent flame retardant sample B and sample D were analyzed by cone calorimeter test (CCT), the HRR of sample D with supported synergist was significantly reduced, and the PHRR decreased from 323 kW/m2 to 264 kW/m2. The morphologies of the residue chars after vertical combustion of polypropylene composites observed by scanning electron microscopy (SEM) gave positive evidence that the supported synergist could catalyze the decomposition of intumescent flame retardants into carbon, which was the main reason for improving the flame retardancy of materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.