Abstract

This paper aims to reveal the influence of different TiC powder particle sizes and process parameters on the cladding morphology of composite materials and realize the forming control of cladding layer. The center composite design of response surface method was adopted to analyze the effects of laser power, scanning speed and particle size on the cladding morphology of composite materials. The mathematical models between process parameters, TiC powder particle size and micro-hardness, wear volume of the composite cladding layer were established and confirmed by variance analysis and model verification. The results indicate that powder particle size has most significant effect on the micro-hardness, and it increase with the increase of scanning speed, laser power and powder particle size; the effect of powder particle size on the wear resistance of the clad layer is most significant, and it increases with the increase of powder particle size and decreases with the increase of scanning speed and laser power. The optimization of process parameters is carried out with the target of maximizing micro-hardness and minimizing wear area. The error rates between prediction and experiment for the micro-hardness and wear area are 0.1% and 2.0% respectively. The results of this paper provide a reference for the prediction and control of the cladding morphology of composite materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call