Abstract

AbstractEpoxy/carbon fiber (CF) composites are widely used for structural applications owing to their exceptional mechanical and physical characteristics. The main aim of this work is to individually analyze the impact of multiwalled carbon nanotubes (MWCNTs) as nanofillers in epoxy/MWCNTs/CF composites prepared by vacuum infusion process (VIP) and hand layup followed by vacuum bagging technique (HLVB). Optimal Manufacturing Strategies were followed at various stages of manufacturing which include the selection of effective dispersion technique for MWCNTs, identification of optimal weight percentage of MWCNTs in epoxy/MWCNTs nanocomposites and preparation of epoxy/MWCNTs/CF composites. For HLVB samples, tensile and flexural strengths increased from 337.5 to 475 MPa and 615.40 to 677.09 MPa. For VIP samples tensile and flexural strengths increased from 371 to 521 MPa and 714.19 to 769.02 MPa. Thermogravimetric analysis (TGA) indicated improvement in the thermal stability of epoxy with the incorporation of MWCNTs/CF and improved weight percentage retention of 84.7% at 375°C. Fracture analysis of the epoxy/MWCNTs/CF composites prepared using VIP were analyzed by FE‐SEM and revealed that constant fiber rupture caused by better interface and improved bridging mechanism eventually led to enhanced mechanical performance. The predominant immediate fracture mechanism of MWCNTs also indicated this improved interfacial interaction.Highlights Pull‐out fracture mechanism was predominantly seen in high viscous epoxy/MWCNTs composites Immediate fracture mechanism of MWCNTs were predominant in low viscous epoxy/MWCNTs sample Constant fiber rupture of VIP samples indicated improved fiber matrix interface Incorporation of MWCNTs showed improved weight percentage retention 0.5 wt% MWCNTs incorporated VIP epoxy/CF composites showed improved performance

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call