Abstract

This study investigates the influence of materials' dislocation source density and initial dislocation density on dislocation evolution mechanism during nanoindentation process. On the basic of discrete dislocation dynamics (DDD) algorithm, a novel 2.5D nanoindentation numerical model was by proposed by coupling with finite element (FE) contact analysis. In particular, new reduced integration method and stress transmission mode were performed in this simulation scheme. Results showed that the dislocation multiplication and slip behavior were both significantly impacted by the initial dislocation source density. Meanwhile, the influence of initial dislocation density focused on the spatial arrangement of discrete dislocations. In addition, transmission electron microscope (TEM) analysis was used to reveal the dislocation configurations during nanoindentation process. Typical dislocation patterns including Shockley partial dislocation and Frank partial dislocation were found in extrusion region, which verifies the reasonable slipping conditions of DDD simulation. The results of this study can be useful in developing DDD model and predicting dislocation evolution rules in nanoindentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.