Abstract

AbstractBiocatalytic hydrogel beads, which retain higher activity, expand, and contract with changes in pH, having biocompatibility, are developed. Composite spherical beads of chitosan having a diameter of 1–2 mm were prepared by ionic gelation using sodium tripolyphosphate (TPP). Above 3% TPP, the activity of the enzyme decreases. The mechanical strength of the chitosan–TPP beads was further improved by the addition of clay or cassava starch granules. The immobilization of protease (fungal, Aspergillus) was done with glutaraldehyde crosslinking. The chitosan–starch hydrogel beads showed significant increase in firmness and stiffness when compared with chitosan–clay beads. The swelling studies show that the particles expand at pH 1.2 and contract at pH 7.4. The activity retention of the immobilized protease was as high as 70% and exhibited a high pH and lower temperature optima than the free enzyme. Chitosan–starch hydrogel beads exhibited degradation peaks at about 90–110°C in TGA analysis. The biocatalyst beads retained 85% of the original catalytic activity even after eight cycles of repeat use. The freeze‐dried beads has good storage stability and can be used either as artificial bioreactor systems in detergent or in therapeutic formulations © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.