Abstract

Abstract Ni–Al2O3 composite coatings were prepared by using sediment co-deposition (SCD) technique from a Watt's type electrolyte containing nano-Al2O3 particles. The corrosion resistance and high temperature oxidation resistance of resulting composite coatings were investigated. It was found that the incorporation of nano-Al2O3 particles in Ni matrix refined the Ni crystal and changed the preferential orientation of composite coatings. Meanwhile, the corrosion and oxidation resistance were improved after the incorporation of nano-Al2O3 particles into Ni matrix. The nano-Al2O3 content in deposits plays an important role for improving the corrosion and oxidation protection. The corrosion and oxidation resistance of Ni-Al2O3 nano-composite coatings produced via SCD technique are superior to that of CEP technique. Compared to pure Ni and Ni-Al2O3 composite coatings fabricated using CEP technique, the Ni–7.58 wt.% Al2O3 composite coating obtained by SCD technique exhibits better corrosion resistance and enhanced high temperature oxidation resistance. Moreover, the mechanism of corrosion and high temperature oxidation resistance of Ni–Al2O3 nano-composite coatings are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call