Abstract
A series of copolymers are prepared via cationic ring-opening polymerization with 1,3-dioxolane (DOL) and trioxymethylene (TOM) as monomers. The crystallization behaviors of the copolymers can be suppressed by adjusting the ratio of DOL/TOM. With LiBF4 as a source for a BF3 initiator, copolymer electrolytes (CPEs) can be prepared in situ inside cells without needing nonelectrolyte catalysts or initiators. The ionic conductivities and Li+ diffusion coefficients ( ) of the CPEs increase with a decreasing DOL/TOM ratio in a certain range. The CPE with a DOL/TOM ratio of 8/2 has the highest ionic conductivity as well as and shows excellent interfacial compatibility with lithium (Li) metal anodes. Li-Li symmetric cells can be uniformly plated/stripped for more than 1200 h. Furthermore, LiFePO4 -Li cells with 8/2-CPE display stable cycling performance for over 400 cycles. This strategy is a promising approach for the preparation of high-performance polymer electrolytes and is sure to promote their application in Li metal batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.