Abstract

In this study, the catalytic behavior of alkali metals and alkaline earth metals (AAEMs) on the pyrolysis of lignocellulosic biomass was investigated, assisted with the online monitoring of synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). Rice husk was pretreated by acid washing and AAEMs (Na+, K+, Ca2+, Mg2+) infusion before pyrolysis. Py–GC/MS and Py–SVUV-PIMS analysis were conducted at 550 °C. The effects of AAEMs on the distribution and the time-evolution of pyrolysis products were comprehensively discussed. With the catalysis of alkali metals, the reaction process was promoted while the duration of the whole pyrolysis process was shortened. The fragmentation followed by ring-fission of sugar units was enhanced, resulting in an increase of aldehyde, ketones, and acids. The ether bond fracture in lignin and the secondary thermal cracking of big molecule phenolics were enhanced, resulting in an increase of phenolics. Phenol and m-cresol were found partly formed by the secondary decomposition of bigger phenolic molecules or oligomers in the late pyrolysis stage. Compared with alkali metals, alkali earth metals have stronger Lewis acidity, which are more conducive to the dehydration of cellulose to form anhydrosugars as well as the secondary dehydration conversion of anhydrosugars to form other dehydrated products. Under the catalysis of alkali earth metals, most of the furfural is generated by the decomposition of hemicellulose in the early pyrolysis stage and a small part came from the secondary conversion of anhydrosugars in the late pyrolysis stage. The dehydration capacity of alkali earth metals induced the repolymerization between phenolic products, resulting in a decrease of the yield of phenolics products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.