Abstract

Brazing connection between diamond particles and KSC82 carbon steel wire was established by the Cu-Sn-Ti alloy, and a diamond wire saw of 500m in length and about 0.75mm in diameter was fabricated. The brazing morphology of the diamond particles was observed using scanning electron microscopy (SEM), and the products and elemental distribution characteristics at the diamond brazed interface were analyzed by the energy disperse spectroscopy (EDS) and X-ray diffraction (XRD). The tensile mechanical properties of the brazed diamond wire saw was obtained through tensile tests, and the morphology of the fracture was observed using the SEM to analyze the tensile fracture mechanism. Further, the diamond wire saw was used for slice processing test of G663 granite, and the failure mode of the wire saw was analyzed. The results showed that there was Ti segregation at the diamond brazing interface, and that Ti2C new phase was detected at the interface, where brazing connection of diamond particles was achieved through by reactive wetting. The tensile and yield strengths of the brazing diamond wire saw were 1289.08 and 923.18MPa respectively, its plasticity was twice that of original KSC82 steel wire, and the tensile failure mode of the wire saw was ductile fracture. The stable cutting efficiency of the brazing diamond wire saw cutting the G663 granite with cross-sectional dimensions of 480mm×260mm could reach 15mm/min. There were three abrasive wear modes for the diamond particles of the wire saw working layer, including normal wear, shear fracture and separation, of which separation accounted for 14.3%. The reason for the separation of diamond was attributed to the oxidation of Ti element in Cu-Sn-Ti alloy and the fatigue crack initiation and growth at the diamond brazing interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call