Abstract
Skin cancer is the most common type of cancer caused by the uncontrolled growth of abnormal cells in the epidermis and the outermost skin layer. This study aimed to study the anti-skin cancer potential of [6]-Gingerol and 21 related structural analogs using in vitro</i> and in silico</i> studies. The ethanolic crude extract of the selected plant was subjected to phytochemical and GC-MS analysis to confirm the presence of the [6]-gingerol. The anticancer activity of the extract was evaluated by MTT (3-[4, 5-dimethylthiazol-2-y]-2, 5-diphenyl tetrazolium bromide) assay using the A431 human skin adenocarcinoma cell line. The GC-MS analysis confirmed the presence of [6]-Gingerol compound, and its promising cytotoxicity IC50 was found at 81.46 ug/ml in the MTT assay. Furthermore, the in silico studies used [6]-Gingerol and 21 structural analogs collected from the PubChem database to investigate the anticancer potential and drug-likeliness properties. Skin cancer protein, DDX3X, was selected as a target that regulates all stages of RNA metabolism. It was docked with 22 compounds, including [6]-Gingerol and 21 structural analogs. The potent lead molecule was selected based on the lowest binding energy value. Thus, the [6]-Gingerol and its structure analogs could be used as lead molecules against skin cancer and future drug development process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.