Abstract
For higher efficiency and precision manufacturing, more and more attentions are focused on the surface roughness and residual stress of machined parts to obtain a good fatigue life. At present, the in-situ TiB2/7050Al metal matrix composites are widely researched due to its attractive properties such as low density, good wear resistance and improved strength. It is of great significance to investigate the machined surface roughness, residual stress and fatigue life for higher efficiency and precision manufacturing of this new kind material. In this study, the surface roughness including two-dimensional and three-dimensional roughness, residual stress and fatigue life of milling in-situ TiB2/7050Al metal matrix composites were analyzed. It was found from comparative investigation that the three-dimensional surface roughness would be more appropriate to represent the machined surface profile of milling particle reinforced metal matrix composites. The cutting temperature played a great role on the residual stress. However, the effect of increasing cutting force could slow down the transformation from compressive stress to tensile stress under 270 °C. An exponential relationship between three-dimensional roughness and fatigue life was established and the main fracture mechanism was brittle fracture with observation of obvious shellfish veins, river pattern veins and wave shaped veins in fracture surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.