Abstract
The surface finish of a mechanical part plays an important role as it determines the part’s field performance. The machining parameters and conditions governing the part surface finish also impact on the other machining process performance indicators such as tool wear, tool life, cycle time, machining cost, and undesirable emissions of aerosols and metallic particles. In today’s metal cutting industry, a major concern is the occupational safety and health hazard associated with cutting fluids usage and metallic particle emission. It is therefore necessary to determine machining conditions that could improve the part surface finish while maintaining low the aerosol emission. In this research study, statistical methods are used to study the surface finish parameters and the metallic particle emissions during milling of aluminum alloys (6061-T6, 7075-T6, and 2024-T351) with two coated carbide tools (TiCN and a multilayer TiCN + Al2O3 + TiN). Following an implementation of multilevel design of experiment, machining trials and determination of mains most influential factors, surface responses and desirability functions are used to determine the best process operational conditions and windows. The results of this research demonstrate that TiCN-coated tool generates fewer respirable airborne particles during machining than multilayers TiCN + Al2O3 + TiN-coated tool. Overall, it is shown that the use of TiCN coating tool provides a better opportunity for an environmentally benign dry machining along with improvement on surface quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.