Abstract

Silicone rubber nanocomposites were prepared using 1, 3, 5, and 10 wt% of alumina nanofiller. Corona inception voltage (CIV) due to water droplets was measured using fluorescence technique, and it has decreased for alumina-added silicone rubber nanocomposites and with corona-aged samples. The effect of the corona discharges on the surface morphology characteristics of the nanocomposites was analyzed by measuring contact angle, surface profile measurement using atomic force microscopy (AFM), and characterized by adopting multiresolution signal decomposition (MRSD) technique. The addition of the alumina nanofiller suppressed the surface roughness for the corona-aged nanocomposites and 5-wt% sample observed to have the lowest surface roughness values. Recovery of the surface roughness caused by corona discharges was analyzed at different time intervals, and it was observed that alumina nanoparticle-added silicone rubber showed an incremental reduction in the roughness recovery rate. The laser-induced breakdown spectroscopy (LIBS) technique was adopted to analyze the nanocomposites after the corona aging, and further plasma temperature was evaluated at different recovery times. The addition of an alumina nanofiller increased the plasma temperature, and 5-wt% samples have the lowest plasma temperature recovery rate after corona aging. The analysis of the study indicates that the corona-aged silicone rubber specimen surface properties recover in 8 h of resting time period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.