Abstract

The technical barriers for commercialization of polymer electrolyte membrane fuel cell (PEMFC) are the startup ability and survivability at sub-zero temperatures. Ice formation causes cold start fail and volume change damages the cell components leading to performance decay. Many strategies are used to assist successful cold start and to reduce the performance decay. But, unassisted cold start is very crucial and needs attention. Here, an experimental protocol is reported for successful unassisted cold start using low temperature gas purging at various temperatures (-5,-8,-10,-15, and -20 °C) as well as to recover temporary performance decay. The stability of the membrane electrode assembly is also studied in freeze/thaw and sequential cold start cycles. At temperature −10 °C, there is small performance decay after the 6th freeze/thaw cycle. However, the subsequent cold start cycle shows significant performance decay after the 6th cycle. Changes in microstructures and loss of hydrophobicity in the gas diffusion layer are attributed to the performance decay in both freeze/thaw and sequential cold start cycles. The effect of cold start temperature on the performance of a PEMFC in subsequent freeze/thaw cycles is also studied. It shows that depending upon the start-up temperature, the preferential ice formation can affect the performance decay characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.