Abstract

A seasonal adaptive thermal comfort study was done on university students in naturally ventilated dormitories in the composite climate zone of India. A total of 1462 responses were collected from the students during the field study spread over the autumn, winter, spring, and summer seasons of the academic year for 2018 and 2019. A “Right Here Right Now” type of surveying method was adopted, and the indoor thermal parameters were recorded simultaneously using high-grade instruments. The subjects’ mean thermal sensation (TS) was skewed towards a slightly cool feeling for the combined data. Most occupants preferred a cooler thermal environment during the summer season, while hostel residents desired a warmer temperature during autumn, winter, and spring seasons. During the summer season, the PMV−PPD model overestimated the subjects’ actual thermal sensation, while it underestimated the their thermal sensation in the winter season. The mean comfort temperature Tcomf was observed to be close to 27.1 (±4.65 °C) for the pooled data. Mean clo values of about 0.57 (±0.25), 0.98 (±0.12), 0.45 (±0.27), and 0.36 (±0.11) were recorded during the autumn, winter, spring, and summer seasons, respectively. Furthermore, switching on ceiling fans and opening doors and windows improved occupants’ thermal satisfaction during different seasons. The study results show the effective use of environmental controls and the role of thermal adaptation in enhancing the subjects/overall thermal satisfaction in the composite climate of India.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.