Abstract
BackgroundRice stripe virus (RSV), which is transmitted by small brown planthopper (Laodelphax striatellus Fallén, SBPH), has been reported to be epidemic and cause severe rice stripe disease in rice fields in many East Asian countries, including China. Investigation on viral localization in the vector is very important for elucidating transmission mechanisms of RSV by SBPH. In this study, transmission electron microscopy and immuno-gold labeling technique were used to investigate the subcellular localization of the ribonucleoproteins (RNPs) of RSV in the digestive tract, muscles, ovary and testes of SBPH.ResultsA lot of amorphous RSV inclusion bodies with high electron density were observed in the cytoplasmic matrix and vacuoles of follicular cells of ovarioles in viruliferous SBPH, which were very similar to viral inclusions formed in rice cells. After magnified, it was found that sand-like or parallel filamentary structures were constructed inside the electron-dense inclusions. A large numbers of RSV RNPs distributed diffusely throughout the eggshell surface and interior of ovum, midgut lumen and epithelial cells, while the amount of the virus in muscles was far less than that in the ovary and midgut tissues. Besides RSV, numerous endogenous microorganisms were also observed in SBPH body, including yeast-like endosymbiotes (YLES), endosymbiotic bacteria and insect virus.ConclusionsAccording to the results of the virus localization, a potential mechanism of RSV transovarial transmission was proposed that RSV might replicate and accumulate initially in the inclusions of follicular cells, then exploit the pathway of the nutrition transportation to pass through the eggshell and spread into the oocytes along with the nutrition. Moreover, RSV might exploit muscles for its spread in vector body with a lower efficiency.
Highlights
Rice stripe virus (RSV), which is transmitted by small brown planthopper (Laodelphax striatellus Fallén, SBPH), has been reported to be epidemic and cause severe rice stripe disease in rice fields in many East Asian countries, including China
Abundance rough endoplasmic reticulum (RER), mitochondria and Golgi apparatus existed in the cytoplasmic matrix of follicular cells in the exuberant secretion phase (Figure 1C)
Pleomorphic cytoplasmic inclusions with high electron density were observed in the cytoplasmic matrix and vacuoles of follicular cells in viruliferous SBPH (Figure 1E), and no electron-dense inclusions were observed in follicular cells of non-viruliferous insect (Figure 1D)
Summary
Rice stripe virus (RSV), which is transmitted by small brown planthopper (Laodelphax striatellus Fallén, SBPH), has been reported to be epidemic and cause severe rice stripe disease in rice fields in many East Asian countries, including China. Investigation on viral localization in the vector is very important for elucidating transmission mechanisms of RSV by SBPH. Rice stripe virus (RSV), the type member of the genus Tenuivirus, is currently present in subtropical and temperate regions in East Asian, and has been reported to cause severe losses in rice fields in China in last decades [1]. SBPH nymphs were reported as more efficient vectors than adults, and females as more efficient vectors than males for RSV transmission [2]. Latest research showed that SBPH could transmit rice stripe disease to overseas rice fields through longdistance migration in East Asian countries [6]. It is crucial for disease control to research the mechanisms how RSV is transmitted by SBPH
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.