Abstract
An investigation is carried out in this paper for the predictions of structural performance of double-bottom tankers during ship grounding over the “shoal” type seabed obstacles. Hong and Amdahl developed a simplified analytical model for the unstiffened double bottom. This method is carefully studied, verified and then used as the first stage of our prediction. The second stage is concerned with stiffeners since stiffeners are indispensable components for double-bottom tankers. A prevailing way to handle is to smear stiffeners onto their attached plating known as the smeared thickness method. However, the effective ratio in this method is dubious in such shoal grounding accidents. Proper values of this parameter are determined in stage two, and then together with the method in stage one, constitute a reliable and efficient tool for structural performance predictions of double-bottom structures in shoal grounding accidents.A double-bottom tanker is chosen as object for the case study. Finite element models of the hold both stiffened and unstiffened are created for numerical simulations using the LS_DYNA software. Simulation cases cover a wide range of slope angles of the indenter and indentations. Numerical results show that Hong and Amdahl's model in stage one is capable of predicting energy dissipation with high precision but poor accuracy for grounding resistances, and a possible reason may be the neglect of vertical resistance. The updated smeared method proposed in stage two is also proved to be capable of grasping major characteristics of stiffeners. Results and conclusions drawn from this paper can be conveniently applied for assessments of the performance of ship double-bottom structures during shoal sliding grounding scenarios, and will benefit the application of accidental limit state design concept in the ship design stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.