Abstract

PurposeMultitilting-pad journal bearings (MTPJBs) used in large-scale hydraulic turbines often suffer from complex operating conditions, which greatly influence the overall performance of the rotating machine. The purpose of this study is to establish a thermal-elastic-hydrodynamic lubrication model for MTPJBs that can predict the static and dynamic characteristics of high-speed and heavy-load MTPJBs under different operating conditions.Design/methodology/approachA thermo-elasto-hydrodynamic lubrication model considering the turbulence effect is proposed for high-speed and heavy-load TPJBs, which is solved using the coupled finite difference method and finite element method. The model considered the turbulence effect, thermal energy diffusion, viscosity–temperature–pressure relationship and elastic deformation of the pads. The influences of the operating conditions on static and dynamic characteristics of tilting pad journal bearings were analyzed in depth.FindingsThe operating conditions have a strong effect on the static properties of the bearings. The dynamic characteristics of the TPJB were the most influenced by the shaft speed. The effects of the load direction on the dynamic properties of the TPJB were much stronger than those of the static characteristics.Originality/valueThis study used analytical methods and models to provide theoretical guidance for evaluating lubricating characteristics, assembling conditions and overall health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.