Abstract

In the earthquake early warning (EEW) system, the epicenter location and magnitude of earthquakes are estimated using the amplitude growth rate of initial P-waves. It has been empirically pointed out that the growth rate becomes smaller as epicentral distance becomes far regardless of the magnitude of earthquakes. So, the epicentral distance can be estimated from the growth rate using this empirical relationship. However, the growth rates calculated from different earthquakes at the same epicentral distance mark considerably different values from each other. Sometimes the growth rates of earthquakes having the same epicentral distance vary by 104 times. Qualitatively, it has been considered that the gap in the growth rates is due to differences in the local heterogeneities that the P-waves propagate through. In this study, we demonstrate theoretically how local heterogeneities in the subsurface disturb the relationship between the growth rate and the epicentral distance. Firstly, we calculate seismic scattered waves in a heterogeneous medium. First-ordered PP, PS, SP, and SS scatterings are considered. The correlation distance of the heterogeneities and fractional fluctuation of elastic parameters control the heterogeneous conditions for the calculation. From the synthesized waves, the growth rate of the initial P-wave is obtained. As a result, we find that a parameter (in this study, correlation distance) controlling heterogeneities plays a key role in the magnitude of the fluctuation of the growth rate. Then, we calculate the regional correlation distances in Japan that can account for the fluctuation of the growth rate of real earthquakes from 1997 to 2011 observed by K-NET and KiK-net. As a result, the spatial distribution of the correlation distance shows locality. So, it is revealed that the growth rates fluctuate according to the locality. When this local fluctuation is taken into account, the accuracy of the estimation of epicentral distances from initial P-waves can improve, which will in turn improve the accuracy of the EEW system.

Highlights

  • In the earthquake early warning (EEW) system, the epicenter location and magnitude of earthquakes are estimated using the amplitude growth rate of initial P-waves

  • In the earthquake early warning (EEW) system, the magnitude and epicenter location of earthquakes are estimated within several seconds after P-wave arrival

  • Source functions whose duration times reach several seconds or more, i.e., earthquakes bigger than magnitude M7, may cause a significant change to the B value. This is because the source duration time is longer than the length of the time window to calculate the B value, which is 2 s in the present EEW system

Read more

Summary

Introduction

In the earthquake early warning (EEW) system, the epicenter location and magnitude of earthquakes are estimated using the amplitude growth rate of initial P-waves. The B values of the observed earthquakes in this study are calculated from high-frequency (higher than 10 Hz) seismic waves. We showed that variation in the condition of heterogeneities (correlation distance) changes the B values and causes fluctuation in the B values even if the epicentral distances are the same.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.