Abstract

Pd/CeO2–ZrO2–Pr2O3 (CZP) catalysts with different Ce/Zr molar ratios were synthesized and systematically investigated by XRD, N2 adsorption–desorption, XPS, H2-TPR, OSC and in situ DRIFTS techniques. The results of XPS, in situ DRIFTS, etc., show that the number of oxygen vacancies increases with the increasing Zr content and thus leads to the enhanced metal-support interaction and the accelerative formation rate of nitrate, formate, acetate and carbonate species, resulting in improving catalytic performance for HC and NO elimination, especially for Pd/CZP catalysts with Ce/Zr from 1/2 to 1/3. While Pd/CZP catalysts with higher OSC value (Ce/Zr=4/1–1/2) exhibit better catalytic activity of CO and NO2 elimination. An appropriate concentration of Zr facilitates the diffusion of Pr from the surface to the bulk of the CZP supports, thus forming more homogeneous CZP solid solution and improving the structure/textual stability, which promotes the thermal stability of catalysts. Pd/CZP catalysts with Ce/Zr from 2/1 to 1/2 exhibit good thermal stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.