Abstract

Two-dimensional MoS2-based heterostructures have been given great attention due to their excellent properties. In this work, using first-principles calculations, the photocatalytic performances for overall water splitting and the photocatalytic mechanism of graphitic SiC (g-SiC)/MoS2 van der Waals heterostructures (vdWHs) have been deeply studied compared with the previous report. We align common type-II band edges for the g-SiC/MoS2 vdWH in different configurations, which demonstrates that the reduction and oxidation reactions are conducted on different parts in the g-SiC/MoS2 vdWHs. Besides, the built-in electric field induced by the charge transfer at the interface region can be used to hinder photogenerated e-/h+ from recombining, which is advantageous to the availably enhanced carrier mobility and extended lifetimes. More meaningfully, the g-SiC/MoS2 vdWHs all have considerable optical absorption as high as 105 cm-1 in the visible zone and enhanced absorption capacity in contrast to the separate g-SiC and MoS2 monolayers. Furthermore, owing to the contribution of built-in electric field, the g-SiC/MoS2 vdWH in diverse patterns can be used as an outstanding photocatalyst even under near-infrared light with high efficiency. Overall, these findings predict a promising application prospective for the g-SiC/MoS2 vdWHs as extraordinary photocatalysts for overall water splitting reactions, suggesting the valuable significance in the fields of hydrogen production and energy conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call