Abstract
The liquid lead-bismuth eutectic (LBE) has distinct thermal and physical properties that challenge the effectiveness of traditional RANS turbulence models and turbulent Prandtl number (Prt) models for accurately simulating its flow and heat transfer characteristics. This study aims to investigate numerical simulation models of LBE based on existing experimental data. Simulations are conducted using different combinations of three turbulence models and four Prt models, and comparisons are made with experimental data. The local and overall heat transfer characteristics of LBE are analyzed, and the applicability of each model combination is evaluated. Results indicate that for simulating local heat transfer characteristics, the SST k-ω turbulence model combined with the Prt model proposed by Cheng et al. yields the highest accuracy. Additionally, the empirical correlation for heat transfer proposed by Kutateladze provides the best prediction of the local Nusselt number. For overall heat transfer characteristics, the combination of the SST k-ω turbulence model and the Prt model introduced by Reynolds et al. demonstrates the highest accuracy and applicability. This investigation might offer a pivotal benchmark for the discernment of appropriate computational fluid dynamics (CFD) models for liquid metal breeder reactor (LMBR) applications utilizing lead-bismuth eutectic (LBE) as coolant.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Nuclear Reactor Design and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.