Abstract

By minimizing the mean square reconstruction error, multisets mixture learning (MML) provides a general approach for object detection in image. To calculate each sample reconstruction error, as the object template is represented by a set of contour points, the MML needs to inefficiently enumerate the distances between the sample and all the contour points. In this paper, we develop the line segment approximation (LSA) algorithm to calculate the reconstruction error, which is shown theoretically and experimentally to be more efficient than the enumeration method. It is also experimentally illustrated that the MML based algorithm has a better noise resistance ability than the generalized Hough transform (GHT) based counterpart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.