Abstract

Mini-fluidized beds (MFBs) can significantly enhance the mass transfer, heat transfer and mixing process. In this study, planar laser induced fluorescence method (PLIF) was used to evaluate the mixing performance in liquid-solid mini-fluidized beds. In contrast to the particle-free tubes, the relative mixing index, mixing length, mixing time, specific power consumption, mixing effectiveness and energy efficiency of mini-fluidized beds with inner diameters of 1–3 mm were analyzed. The relative mixing index of the mini-fluidized beds is 3.07–9.55 times that of the particle-free tubes under the same conditions, and the mixing length and time are reduced by 45.11% ∼ 99.59%. When the bed-to-particle diameter ratio is 13.86, the optimal operating voidage is about 0.76, which corresponds to the maximum mixing effectiveness and mixing energy efficiency. The mixing enhancement of the mini-fluidized bed system was evaluated, which provides a theoretical basis for the new application of microstructures in mini-fluidized bed reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.