Abstract

This work approaches the effects of a synthetic nanofiller on poly(vinyl alcohol)/poly(vinylpyrrolidone)/zirconium phosphate (PVA/PVP/ZrP) nanocomposites searching its future application as control drug delivery. ZrP was synthesized by reaction of phosphoric acid and zirconium (IV) oxide chloride 8-hydrate (ZrOCl2·8H2O). Nanocomposites with fixed amount of ZrP (2 mass%) and three different blend proportions were studied. Structural, miscibility, thermal, and crystallographic diffraction and dynamic-mechanical characteristics were assessed. For all nanocomposites, wide-angle X-ray diffraction showed changes for the ZrP diffraction pattern with the amount of PVA leading to an intercalated structure. Infrared spectroscopy (FTIR) revealed strong interaction between PVA and ZrP. It was observed that ZrP collaborates with the improvement in PVA thermal stability. For all nanocomposites, PVA crystallinity degree, cold crystallization, and melting temperatures were reduced. Storage modulus increased showing reinforcing action of ZrP. Miscibility study by dynamic mechanical analysis induced to infer that the PVP-rich nanocomposite formed a polymeric miscible system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.