Abstract

Microwave torrefaction (MT) was proposed for pre-treating herb residue (HR), which is a typical high-moisture biomass waste. A series of comparative experiments between MT and conventional torrefaction (CT) on HR were conducted. The effects of temperature, time, moisture content of HR, and microwave power on torrefaction performance and microwave energy consumptions were comprehensively investigated. With the response surface methodology (RSM), the combined effects between each two parameters were analyzed, and the moisture content was evaluated as the most influential factor for torrefaction and energy consumption. The effects of microwave on torrefaction were comparatively evaluated by TG-MS-FTIR. MT could remove bound water efficiently. With the rupture of HR structure and the high-degree decomposition of hemicellulose and lignin, MT positively influenced the yields of the permanent gases and organic volatiles. Moreover, the gasification performance of different HR samples were evaluated in a fixed bed gasifer. MT-HR showed the highest gas yield (0.86 Nm3/kg) and heating value of gaseous products (13.70 MJ/Nm3), with the lowest tar generation (12.72 wt%). This study provides an in-depth understanding of MT process, and the MT integrated with steam gasification can be regarded as a feasible approach for high-moisture biomass waste treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.