Abstract

The surface of the glass channel of microfluidic chip is treated with dichlorodimethylsilan. After the treatment, the silicon hydroxyl on the surface of the glass channel is silylated, which results in the reduction or even the elimination of the electroosmotic flow. Furthermore, full-potential linear-muffin-tin-orbital molecular dynamics method is used to investigate the micro -mechanism of surface reaction theoretically. The calculation results indicate that the hydrogen atom in silicon hydroxyl binds with the chlorine atom in dichlorodimethylsilan to form a stable HCl molecule and goes off, thereby the surface of the channel is covered with silylane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.