Abstract

Micro-milling of cemented carbides is a challenging task due to their high hardness, low toughness and high wear resistance. Ensuring good surface quality and dimensional accuracy is crucial for extending parts service life, which in turn enhances economical and environmental sustainability. This paper is mainly focused on evaluating surface formation mechanisms, scale effects, fracture behaviour and chip formation using distinct cemented carbide micro-milling tools with multi-layer diamond HF-CVD. In order to achieve higher precision and more efficient micro-milling operations on WC-15Co and WC-10Co, a systematic experimental approach has been carried out. The influence of cutting parameters, achievable surface quality and defects occurrence were thoroughly examined. Experimental results evidence the influence of operational conditions on the chip formation of cemented carbides as well as an important impact of the utilized cutting tool. Micro-pits, cracks, thin ploughing layer and fractured workpiece edges are amongst the observed surface damage mechanisms. A ductile cutting regime of the high-hardness composite material is confirmed, exhibited by the plastic deformation even when small depths of cut are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.