Abstract
The aerospace component material GH4169 has low thermal conductivity and poor machinability, resulting in difficulty to guarantee good surface quality after conventional cutting. High-pressure cooling assisted machining technology can effectively improve the problem. In order to study the effect of high-pressure cooling assisted processing technology on the machined surface quality of GH4169, in this paper, Deform-3D was first used to construct a thermo-mechanical coupling finite element model for turning GH4169 under high-pressure cooling conditions, to analyze the turning temperature and surface residual stress. Then, analysis was carried out on the residual stress, work hardening behavior, and metamorphic layer of the GH4169 machined surface, in combination with the turning experiment. The results show that, under the conditions of little feeding and highspeed cutting, the GH4169 turning surface generates residual tensile stress along with both the feeding and turning directions. Moreover, the residual tensile stress gradually turns into the residual compressive stress along the depth direction. The application of high-pressure coolant can reduce the residual tensile stress of the machined surface. As the cooling pressure increases, the residual tensile stress of the machined surface decreases. The coupling effect between thermal deformation and plastic deformation when turning GH4169 can cause the work hardening of the surface, and the hardening degree decreases with the increase of cooling pressure. The high-pressure cooling assisted machining technology can effectively reduce surface plastic deformation, and promote the lessening of grain refinement degree of the material surface, thereby reducing the thickness of the metamorphic layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.