Abstract

In order to study the influence of torque load on the lubrication and wear of the sliding bearing of the rigid rotor system, the theoretical and experimental researches on the single-span rotor system with low speed were carried out. A special force sensor was used to measure the bearing load under different torque excitations, and the oil film pressure was calculated. The oil film pressure and thickness of sliding bearing under low speed (210r/min) were simulated by combining the lubrication theory. Based on the film thickness ratio theory, the corresponding relationship between the lubrication state and the torque load value was deduced. In addition, the wear rate and abrasive grain morphology of sliding bearing with different torque values were analyzed by means of oil sample preparation to verify this correspondence. The results show that the film thickness ratio has a logarithmic function relationship with the constant torque load, and the film thickness ratio curve can be used to determine the corresponding torque values under different lubrication states. The wear rate under mixed lubrication state increases exponentially with the torque load, and the main wear mechanism is adhesive wear and abrasive wear. The research results have certain guiding significance to the adjustment of the actual running condition of sliding bearing and its life prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.