Abstract

Herein symmetrical four-legged suspension lunar lander was used as the research object, the six-degree-of-freedom dynamic model was built and the model of the lunar soil friction coefficient was improved. For the low-gravity simulation on objects outside earth for future work, the law of dynamic similarity for detectors was deduced. A new method was proposed for simulating the low-gravity field on the surface of objects outside earth, which was achieved by changing initial conditions of the landing by the probe and by subsequent treatment of experimental data. The prototype tested the limitation of this method was verified. It is shown that the prototypes of detectors can be used in detectors low-gravity simulation test with this method, and equipments are simple and operationally effective. This method can be used for later lunar exploration, and low-gravity simulations on extraterrestrial objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.