Abstract

ABSTRACTElectrospinning is a flexible and efficient method for producing nanofibers by using relatively dilute polymer solution. However, there are many parameters related to material and processing that influence the morphology and property of the nanofibers. This study investigates the influence of electric field and flow rate on diameter and tensile properties of nanofibers produced using polyacrylonitrile (PAN)‐dimethylformamide (DMF) solution. Stability of the spinning jet is investigated via fiber current measurement and an image system at different electric fields and solution flow rates. It is observed that a set of electric field and flow rate conditions favor producing thinnest, strongest, and toughest nanofibers during electrospinning process. Other conditions may lead to instability of the Taylor cone, discontinuous jet, larger diameter fiber, and lower mechanical properties. Finally, a simple dynamic whipping model is adopted to correlate the nanofiber diameter with volumetric charge density and is found to be excellent validating our experimental results. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41918.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.