Abstract

A coupled model based on crystal plasticity and phase field theories that express both plastic anisotropy of HCP metals and expansion/shrinkage of twin-bands is proposed in the present study. In this model, the difference of the hardening rate in each slip system is expressed by changing their dislocation mobility as a numerical parameter defined in the crystal plasticity framework. The stress calculated via crystal plasticity analysis becomes to the driving force of multi-phase filed equations that express the evolution of twin bands of several variants, which include both the growth and shrinkage. Solving this equation set, the rate of twinning/detwinning and the mirror-transformed crystal basis in the twinned/detwinned phase are obtained and then, crystal plasticity analysis is carried out again. Using the present model, a uniaxial cyclic loading simulation along [0001] direction on the specimen including two variants of twin-bands is carried out by means of finite element method (FEM). The results show that the detwinning stress decreases with increase of the pre-tensioned strain. This is caused by a residual compression stress resulting from the twin shearing that occurs in the vicinity of two twin boundaries approaching each other.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call