Abstract

In this study the combined effect of thermal environment and mechanical loadings on the interlaminar shear stresses of both moderately thin and thick composite laminated plates are numerically analyzed. The finite element modeling of laminated composite plates and analysis of interlaminar stresses are performed using the commercially available software package MSC NASTRAN/PATRAN. The validity of the present finite element analysis is demonstrated by comparing the interlaminar stresses developed due to mechanical loadings derived using the present FEM with those of available literature. Various parametric studies are also performed to investigate the effect of thermal environment on interlaminar stresses generated in asymmetric cross-ply composite laminated plates of different length to thickness ratios (L/H) and boundary conditions with identical mechanical loadings. It is observed that the elevated thermal environment under identical mechanical loading lead to higher interlaminar shear stresses varying with length to depth ratio and boundary conditions in asymmetric cross-ply laminated composite plates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.