Abstract
Ignition characteristics of the long electrode distance high-energy spark igniter (LHSI) in a cavity-stabilized scramjet combustor at low flight Mach has been numerically and experimentally investigated and compared with those of conventional lower energy spark igniter (SI). The effects of ignition and injection schemes on ignition performance were analyzed and the enhancement of greater spark energy were verified. The results show that the widest ignition boundary of SI is observed when the kerosene is injected in far field due to the sufficient evaporation of kerosene droplets and the disturbance caused by upstream cavity. Due to the greater energy deposition by LHSI, the ignition performance is markedly improved and the ignition boundary of combustor is extended from 0.131–0.148 to 0.091–0.224 under the scheme of I1+L2. The increased energy deposition of spark plasma ignites more combustible mixture and enhances the initial combustion, leading to a larger high-temperature zone. This is crucial for ensuring the survival of the flame kernel against dissipation of airflow in the scramjet combustor operating at low fight Mach numbers due to the short duration of spark discharge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.