Abstract

Amorphous silicon dioxide exhibits low temperature expansion coefficient and stability of dielectric properties over a wide range of frequencies and temperatures, and plays an important role in integrated circuits and microelectronics. Downscaling of dimensions in there devices means great challenges for thin film reliability and physical characterization. Mechanical failure caused by stresses in thermal conditions is the major reliability issues for electronic devices. As the experiments have limitations in micro/nano-scale characterization of fracture properties at high temperatures, atomistic simulation is a proper way to investigate this particular mechanism. In this paper, the structural and fracture properties of amorphous silicon dioxide (a-SiO2) were studied at temperatures up to 1,500 K. The simulation results consist with the experiments on pair distribution function, structure factor, angular distributions and temperature-dependent Young’s moduli. The calculated Young’s modulus is close to the simulation and experimental results of 72.5–78.9 GPa for SiO2, and begin to drop after 900 K With temperature increasing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.